Table 1. Analysis of the uranium diffraction pattern

hkl	Estimated diameters in mm.	Measured diameters in mm.	Intensity
311	19.75	19.75	vf
330	22.60	$22 \cdot 50$	f
212	24.50	$24 \cdot 25$	f
312	26.40	26.50	vs
620	33.00	33.00	8
611	$34 \cdot 20$	$34 \cdot 50$	vf
114	41.10	41.50	vs
424	47.00	47.00	8
434	48.50	48.30	8
115	51.00	51.00	vf
860	53.60	$53 \cdot 50$	vf
084	$58 \cdot 80$	58.50	f

v = very; f = faint; s = strong.

rings. Also in the electron micrograph (Fig. l(a)) some tetragonal crystals can be identified.

In the thin film state uranium thus assumes the β -phase structure which according to X-ray studies should occur at a high temperature. It may be pointed out that the heating of the specimen during the examination in the electron microscope might be responsible for the phase transformation. In this respect special care was taken to keep the intensity of the electron beam at a minimum. The experiment was repeated with different films prepared under the same condition but the result was always the same. Similar structural anomalies in the thin film state have been observed by other authors in several cases. Quarrel (1937) reported that many metals which normally crystallize as face-centred cubes were found to develop the hexagonal close-packed structure in the thin film. Aggarwal & Goswami (1957) observed very recently a new phase (face-centred cube) of molybdenum in thin film. The mechanism of such phase transformations in the thin film state is not yet clearly understood and hence deserves special attention.

The author is indebted to Prof. N. N. Das Gupta for his kind interest in the present work.

References

- AGGARWAL, P. S. & GOSWAMI, A. (1957). Proc. Phys. Soc. B, 70, 708.
- JACOB, C. W. & WARREN, B. E. (1937). J. Am. Chem. Soc. 59, 2588.
- QUARREL, A. G. (1937). Proc. Phys. Soc. 49, 279.
- TUCKER, C. W. (1951). Acta Cryst. 4, 425.
- WILSON, A. S. & RUNDLE, R. E. (1949). Acta Cryst. 2, 126.

Acta Cryst. (1958). 11, 680

A Detailed Refinement of the Crystal Structure of Potassium Ethyl Sulphate

BY MARY R. TRUTER

Department of Inorganic and Structural Chemistry, The University, Leeds, 2, England

(Received 11 February 1958)

Refinement of the crystal structure of potassium ethyl sulphate using Jarvis's three-dimensional data has been carried out until R = 0.098. Anisotropic thermal parameters have been determined, and an estimate has been made of the error arising from rotational oscillation. The bond lengths are $S-O_1=1.466$ Å, $S-O_2=1.466$ Å, $S-O_3=1.451$ Å (mean $S-O=1.46\pm0.01$ Å), $S-O_4=1.60\pm0.01$ Å, $C-O=1.45\pm0.02$ Å and $C-C=1.51\pm0.02$ Å.

Introduction

In most compounds in which oxygen is bonded only to sulphur the S–O bond lengths are close to 1.43 Å (see Abrahams, 1956 for a summary); it is probable, therefore, that 1.43 Å is the double-bond length. The S–O bond may be longer, about 1.6 Å, when the oxygen is bonded to another atom as in $K_2S_2O_7$ (Lynton, 1955) and the ion $HS_2O_7^-$ (Steeman & MacGillavry, 1954) but these interatomic distances have not been determined accurately. Jarvis (1953) studied the structure of potassium ethyl sulphate, $KO_3SOC_2H_5$, by three-dimensional X-ray crystal structure analysis and found that the three chemically equivalent S=O bonds were 1.44, 1.45 and 1.49 Å while the S–O bond to the esterified oxygen was 1.60 Å. Jarvis's results were obtained after one cycle of correction for series

Table	1.	Elect	tron	dens	ities	and	curve	atures	
Ratios	bet	ween	obse	erved	and	calcu	lated	values	

	ϱ	$\partial^2 \varrho / \partial x^2$	$\partial^2 \varrho / \partial y^2$	$\partial^2 \varrho / \partial z^2$
K+	0.976	1.005	0.952	0.911
S	0.998	1.027	0.987	0.943
0,	0.975	0.950	1.020	0.990
0,	1.023	1.013	1.026	1.011
$\tilde{D_3}$	0.972	1.035	0.906	0.883
D₄	1.000	1.008	1.016	1.018
C,	0.900	0.874	0.779	0.868
C_2	0.871	0.862	0.720	0.890

Table 2. Parameters used for structure factor calculation

	x/a	y/b	z/c	b_{11}	b_{12}	b_{13}	b_{22}	b_{23}	b_{33}
K^+	$\overline{0} \cdot \overline{12826}$	$\overline{0} \cdot \overline{08572}$	0.10956	$1554 imes10^{-5}$	$\overline{171} \times 10^{-5}$	$671 imes 10^{-5}$	958×10^{-5}	239×10^{-5}	880×10^{-5}
S	0.42102	0.06691	0.15973	1562	$\overline{129}$	578	760	$\overline{171}$	822
01	0.46478	0.19654	0.06999	2725	$\overline{98}$	909	1087	$\overline{2}\overline{9}\overline{9}$	985
$\tilde{O_2}$	0.25223	$\overline{0} \cdot \overline{0} \overline{3} \overline{7} \overline{4} \overline{2}$	0.12314	2431	469	550	1035	414	895
$\tilde{O_3}$	0.56424	$\overline{0} \cdot \overline{0} \overline{6} \overline{2} \overline{3} \overline{0}$	0.20973	1747	102	423	1940	$\overline{2}\overline{2}\overline{0}$	1108
0 ₄	0.39596	0.21356	0.26168	1983	$\overline{3}\overline{5}\overline{3}$	474	1264	$\overline{149}$	788
C_1	0.33246	0.13007	0.36026	2250	30	734	2067	$\overline{2}\overline{4}\overline{8}$	894
C_2	0.33767	0.28710	0.44943	2468	253	821	2784	$\overline{4}\overline{5}\overline{4}$	940

termination errors which affected one S=O bond by as much as 0.05 Å. This, and the disparity in the S=O bonds suggested that more accurate values for the interatomic distances could be obtained by further refinement, which is described in this paper. Reference should be made to Jarvis's paper for the general description of the structure. The axes have been interchanged to make the space group $P2_1/a$ with a = 7.51, b = 6.99, c = 11.62 Å and $\beta = 100.3^{\circ}$. Jarvis's designations for the atoms of the anion, also used here, are

Three-dimensional anisotropic refinement

Differential syntheses using the 908 F(hkl) measured by Jarvis were used to refine co-ordinates and a backshift correction was applied to compensate for finite series errors.

For the first cycle the structure factors were calculated from Jarvis's final co-ordinates, using the scattering factors for C and O given by McWeeny (1951), for S in Internationale Tabellen (1935), and for K^+ by Berghuis *et al.* (1955), with a common isotropic temperature factor exp – $(B \sin^2 \theta / \lambda^2)$ where B =4.0 Å². The first set of differential syntheses was then computed, and the results showed that changes in the co-ordinates and in the thermal vibration parameters were required. Comparison of the values for the peak electron density, ρ , and of the six curvatures $\delta^2 \rho / \delta x_i \delta x_j$ corresponding to ρ_o and ρ_c confirmed Jarvis's finding that the thermal motion parallel to the b-axis was less than in the other directions. It was also evident that considerable changes in the isotropic temperature factors were required. Accordingly the values of B were decreased to 3.5 Å² for S and K⁺ and increased to 4.5 Å² for O₁, O₂, O₃ and C₂ (i.e. for the light atoms not bonded to two atoms other than hydrogen). A second set of structure factors was calculated from the new co-ordinates using the new temperature factors together with Jarvis's empirical anisotropic temperature factor exp $(0.46k^2/b^2)$. The agreement index

$$(R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|)$$

fell from 0.178 to 0.124.

From the co-ordinates obtained from a second set of differential syntheses the values for the three S=0bonds were 1.444, 1.472 and 1.458 Å all having estimated standard deviations of 0.009 Å. Table 1 shows the ratios between the observed and calculated values for the peak electron densities and curvatures. It can be seen that, despite the use of an overall anisotropic temperature factor, the curvature differences are too large to give trustworthy back-shift corrections. Individual anisotropic thermal parameters for each atom were required and these were determined by the refinement procedure described by Cruickshank (1956a), (the equations are given in § 3 of his paper). This method leads to values of b_{ij} such as to make $\partial^2 \rho_o / \partial x_i \partial x_j$ equal to $\partial^2 \rho_c / \partial x_i \partial x_j$, where the b_{ii} are the coefficients in the temperature factor expression for each atom,

$$\exp -\{h^2b_{11}+hkb_{12}+hlb_{13}+k^2b_{22}+klb_{23}+l^2b_{33}\}$$

Two cycles of refinement with anisotropic thermal vibration parameters reduced R to 0.098. The structure factors are shown in Table 4 and were calculated from the parameters in Table 2 which are the actual values used by the electronic computer, not rounded off to the number of truly significant figures. In the final set of differential syntheses the largest coordinate shift (0.008 Å) and the largest change in b_{ij} were the same as the corresponding standard deviations indicating that further refinement was unlikely to produce significant changes. Final co-ordinates derived from these differential syntheses are given in Table 3 together with standard deviations obtained

Table 3. Final co-ordinates and standard deviations

				$\sigma(x)$	$\sigma(y)$	$\sigma(z)$
	x a	y/b	z/c	(Å)	(Å)	(Å)
K+	$\overline{0}$ $\cdot\overline{1}\overline{2}\overline{8}\overline{3}$	$\overline{0} \cdot \overline{0} \overline{8} \overline{5} \overline{9}$	0.1095	0.002	0.002	0.002
\mathbf{s}	0.4211	0.0668	0.1597	0.002	0.002	0.002
0,	0.4659	0.1962	0.0704	0.007	0.006	0.007
0,	0.2516	$\overline{0} \cdot \overline{0} \overline{3} \overline{7} \overline{4}$	0.1232	0.007	0.006	0.007
0.	0.5645	$\overline{0} \cdot \overline{0} \overline{6} \overline{2} \overline{4}$	0.2101	0.006	0.008	0.007
O₄	0.3956	0.2131	0.2610	0.007	0.002	0.006
C_1	0.3335	0.1297	0.3606	0.011	0.011	0.009
Ċ,	0.3381	0.2874	0.4501	0.012	0.013	0.012

from the formula of Cruickshank & Robertson (1953). The final thermal parameters, also derived from these differential syntheses, are given in Table 5 where they are expressed as the mean square amplitudes (U_{ij}) of the atomic vibrations. The U_{ij} are related to the

 b_{ij} by $U_{ii} = a_i^2 b_{ii}/2\pi^2$ and $U_{ij} = a_i a_j b_{ij}/4\pi^2$ $(i \neq j)$ where a_i and a_j may be $a \sin \beta$, $b \ or \ c \sin \beta$. As the estimated standard deviations $\sigma(U_{ij})$ for any atom were approximately equal whatever i and j were, only the average $\sigma(U)$ is shown in Table 5.

Corrections for rotational oscillation

It has been shown (Cox, Cruickshank & Smith, 1955) that systematic errors in atomic positions may arise from rotational oscillations, the atoms in a molecule

Table 4. Observed and calculated structure factors

hkl	Fo	Fc	hkl	Fo	Fo	hkl	P _o	Pc	hkl	Fo	Fc	hkl	Fo	Fc	hkl	Fo	Fc
$\begin{array}{c} 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 000\\ 00$	10289693741019779 2824838722822163730423199131948975385232171219322274139915645 2536739156847273335115101215	31039173916117768 28166655399283373492290318351284813718195131491719840127912646 213033413184727325135121314	88888888 0 1 1 1 1 1 1 1 1 1 1 1 1 1	101132162246 4241473329929563833354303281992714 372271253832192225222156252226749 52197253223939252	1124235946 	$ \begin{array}{c} 516\\ 517\\ 518\\ 519\\ 519\\ 519\\ 519\\ 519\\ 519\\ 519\\ 519$	8846798889 21696171213 89260442749465 10222457788151583444454 5131469123102899889354374 1610		6222334425662789, 2122342562789 01117117171717171717173333344355567781, 0111713333344355567899 0311122334455567899 0311122333344355567899 03111222345555555555555555555555555555555	6134304173486366 3847114457 4571345144532127774 214963391241987910957 793443118965344 3		7777777 0000000 0 2223343556 78 0112334455678 01222334567 1222456 0122234456 012223545 12554 012 012	456343 7952744 4446159231171271874 15181210774301383107884 56974124358 435766 4225121587		1555 1555 1555 1555 1555 1555 1557 1,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	124999911128131156 126084115198194381210127396 77312137161648699 124153878684 421821974983 8315193	123122215011946 105081251713281511573106 67623713456488 11443957565 3259324951183 9220239

appearing closer to its mass centre than they really are. A rigorous analysis of the thermal motion (Cruickshank, 1956b) is possible only for rigid molecules, but the ethyl sulphate anion is probably not rigid so that only an approximate correction for rotational oscillation can be given.

Cruickshank (1956c) has shown that the approx-

imate correction, ε , to the length OP from the mass centre O to an atom P is $\varepsilon = (U_a + U_b)/2(OP)$ where U_a and U_b are the mean square amplitudes of oscillation about two axes through O orthogonal to OP. Except for the potassium ion which must be undergoing translatory motions only, the values of U_{ij} in Table 5 include both rotational and translational

Table 4 (cont.)

hkl	Fo	Fc	hkl	°,	Fc	hk l	Fo	Fc	hkl	Fo	Fc	hkl	P _o	Fc	hkl	Fo	Fc
263 265 265 266 266 266 266 266 266 269	6 - 25 9 - 17 - 8 - 12 - 6	9 29 10 21 9 26 13 6	084 086 280 281 281 282 282 282	10 5 10 15 7 11 18	12 - 6 - 11 - 17 - 13 20 12	4,1,10 4,1,11 4,1,12 4,1,13 610 611 611 612	8 5 4 3 11 14 7 1	- 4 6 3 12 17 9	524 525 525 525 526 527 528 529 529 529	7 22 4 33 27 5 19 15 9	- 8 - 22 - 5 - 31 - 28 - 7 21 17 9	631 632 632 633 633 634 635 636	18 7 16 21 14 13 8	18 7 8 - 17 - 20 - 16 - 16 - 8	743 744 745 746 747 748 749 053	9 19 14 12 13 3	- 9 - 17 - 13 4 12 13 4 14
4661 4661 46662 4666666666667 4445667	24 10 24 7 8 3 12 8 - - - 25 - - 24 8 8	25 10 25 6 9 13 13 8 26 7 9	284 285 285 285 286 480 481 481 481 482 483	7 4 9 10 7 3 10 3 3	- 12 - 12 - 12 - 13 - 4 - 4	613 614 614 615 616 618 6,1,10 812 813 120	960 106696 98 62	- 10 - 12 - 8 - 4 - 8 - 8 10 9 - 6	725 727 728 7,2,11 031 032 033 034 035 036	8 16 14 8 39 44 29 322	11 20 17 - 8 41 39 27 29 27 29 25 - 22	637 637 638 639 6,3,10 6,3,11 140 741 142 742 143	6 8 9 8 9 8 25 25 25 30 45	7 - 6 10 9 11 9 - 25 - 24 27 - 31 46	054 057 058 059 0,5,10 0,5,11 0,5,12 250 251 251 251 252	14 17 19 3 11 14 4 11 9 12 23	16 - 19 - 19 - 3 11 12 5 12 - 11 16 - 28
467 468 469 660 661 764	0 16 10 10 12	10 18 11 8 12 5	012 013 014 015 016 017	33 2 2 22 7	32 2 - 2 - 25 - 7 - 17	121 121 122 122 123 123	19 78 68 35 52 33	21 - 79 66 - 39 52 - 33	037 038 039 0,3,10 0,3,11 0,3,12	45 34 7 14 17 11	- 39 - 31 - 6 14 18 10	144 145 145 146 146 147	34 31 33 25 18 6	37 - 34 - 38 - 27 - 19 - 7	253 253 254 255 256 <u>2</u> 57	22 9 9 23 15 4	- 23 - 7 10 27 18 5
662 662 663 664 665 665 666	4 - 6 - 23 - 11 - 6 19 16	5 6 17 18 9 6 16 15	018 019 0,1,10 0,1,11 210 211	13 9 15 20 46 41	- 15 - 9 16 17 - 49 - 36	124 124 125 125 126 126 127	43 10 8 36 18 21 7	42 9 - 10 34 - 18 25 - 6	230 231 231 232 232 232 233	23 20 12 39 3 20	- 20 - 20 - 9 - 39 - 5 - 21	148 148 149 340 341 341 341	10 9 10 45 41 15	10 - 9 - 11 - 45 - 41 - 15 - 9	257 258 259 2,5,10 2,5,10 2,5,11 2,5,11 2,5,12	6 11 11 6 3 8 4 4	8 - 13 - 14 - 7 - 5 - 9 - 3 5
170 171 171 172 172 177 175 175 176 177 177	12 4 13 - 9 10 12 6 11 4 -	1365 13120 11913 13725	211 212 212 212 212 212 212 212 212 215 216 217 217 217 217 217 217 217 217 217 217	13451451643934111	- 10 - 10 - 11 - 16 95 14 22 70 41 11 - 11 	127 128 728 729 1,2,10 1,2,10 1,2,10 1,2,10 1,2,13 320 321 321 321 322 322 322	14 4 17 8 8 5 9 5 742 0 4 1 7 8 8 5 9 5 742 0 4 1 7	$ \begin{array}{r} 15 \\ - 35 \\ - 78 \\ - 78 \\ - 78 \\ - 785 \\ - 621 \\ - 415 \\ - 315$	255 234 235 235 235 236 237 238 239 239 239 239 239 239 23,10 10 10	4 8 5 64 25 5 23 5 24 4 25 5 10 4 8	4 - 8 58 24 50 23 5 - 22 - 23 - 17 - 11 - 14 8	242233445666788891,11	10 34 19 67 24 2 3 9 7 22 5 7 8 38	- 3 33 18 70 24 - 3 - 8 - 29 - 24 - 7 - 7 5 7	2, 450 451 4552 4552 4553 4554 4555 4555 4556 156	4 23 13 4 18 15 12 13 3 4 8 7 2	23 13 - 8 - 15 - 11 - 13 - 4 9 8 12
178 178 179 370	4 - 16 - 13 - 16	5 18 16 16	219 2,1,10 2,1,10 2,1,11 2,1,12 2,1,12	15 9 24 4 4 7	- 10 - 10 - 22 6 5 6	323 324 324 325 325	54 20 37 17	53 18 38 20	2,3,12 2,3,13 2,3,13 2,1,14 430	7 11 8 29	- 6 12 9 25	540 541 541	6 5 4 20	3 - 5 21	457 458 458 459 4,5,11	7 4 8 9 6	7 - 8 - 9 6
372 373 374 375 376 377	19 10 - 19 - 12 - 14 - 14 -	8 10 17 11 4 12	410 411 411 412 412	4 22 28 19 30	3 22 27 18 - 30 10	326 326 327 327 328 329 3,2,10	4 8 49 19 3 7	4 - 9 6 - 29 - 19 3 6	431 432 433 433 434 435 435 436	24 19 37 21 18 21 22	22 - 20 - 36 - 22 - 19 21 23	542 543 543 544 544 544 545	6 42 10 22 5 14 43	- 8 40 - 10 22 - 5 - 15 - 40	650 651 652 652 653 654	8 12 3 8 8	8 13 - 7 - 8 - 8
570 571 571 572 572	9 - 10 11 - 18 4 -	7 11 10 19 5	413 413 414 414 415 516	32 14 11 16 5	- 29 14 - 10 17 - 5	3,2,11 3,2,11 3,2,12 3,2,12 3,2,12	7 8 7 4	- 6 7 - 6 5	437 437 438 438 438 438 439	20 10 6 17 4	22 - 12 - 20 - 6 - 6	546 546 548 549 549 549	5 27 11 6 15	- 5 - 27 - 11 - 6 - 14 - 6	655 655 657 658		7 - 8 3 - 7 5 - 3 7 - 5 7 - 9
573 573 080 081 082	13 7 - 27 - 16 - 5	14 6 27 17 6	410 417 417 418 418 419	4 8 7 12 5	- 4 7 - 7 6 - 14 0	521 521 522 522 522 523) 14 24 12 34 4	4 - 13 24 - 14 31 - 3	4, 3, 11 4, 3, 11 4, 3, 12 4, 3, 13	6 11 15 9	- 6 11 13 8	740 741 741	. 7 	- 6 6 6 8	761 162 164 764 165	12 18 8	+ - 14 3 - 21 3 - 8 3 - 9 7 - 7
083	18	20	4 19	15	- 18	523	17	16	630	24	23	742	1	כ	100		+ - :

	Table 4 (cont.)										
hkl	Fo	Fc	hk l	Fo	Fc	hkl	F _o F _c				
167 168 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 169 160 160 160 161 162 163 164 165 1	4 12 7 8 4 3 8 6	- 4 12 - 6 8 5 - 3 7 7	564 565 566 567 568 569 071	3 9 5 7 12 8 7	- 4 - 8 - 5 6 11 8 - 6	472 472 472 473 473 475 475 476	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
360 361 362 362 362 364 366 364 366 367 369 369 3,6,10	25 8 15 11 20 6 5 7 8 9	- 25 - 8 - 14 11 20 6 - 6 - 8 7 8	072 073 074 076 270 271 271 272 272 272 273 274	12 10 4 4 14 4 16 6 7 1 8 6	- 12 - 9 - 5 3 15 5 8 6 9 3 9 7 	477 180 181 182 183 184 183 184 185 185 185 186	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
560 561 562 563 564	8 7 7 3 4 4	- 9 - 8 6 2 5 4	274 275 275 276 470 471	6 496 79	- 4 - 10 - 7 - 9	380 381 382 382 383 383 384 385	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				

Table 5. Mean square amplitudes of vibration (Values in 10^{-3} Å²)

	<i>U</i> 11	U_{12}	U_{13}	U_{22}	U_{23}	U_{33}	$\sigma(U)$
\mathbf{K}^+	42	-2	13	26	4	59	2
s	42	-2	11	23	-3	54	2
0,	76	-2	22	30	-3	63	6
0.	64	4	10	31	6	59	6
0,	46	1	7	46	-7	72	6
o,	54	-3	10	32	-5	49	5
Ċ,	63	0	15	49	-6	59	10
C ₂	74	3	23	65	-10	65	12

vibrations. It was assumed that the sulphur atom did not undergo rotation, partly because it is close to the mass centre (0.7 Å) and partly because the values of U_{ij} are the same as those for the potassium ion of similar mass indicating that possibly these U_{ij} refer to the translatory motion of the ion as a whole. Accordingly the U_{ij} values for sulphur were subtracted from those for the light atoms to give a set of mean square amplitudes due to rotational oscillation; these were transposed to orthogonal axes perpendicular and parallel to the crystallographic b and c axes, and are quoted as U'_{ij} in Table 6.

Table 6. Mean square amplitudes of rotational oscillation referred to orthogonal axes parallel to a^* , b and c (Values in 10^{-3} Å²)

		(va	nues m 10	• A-)		
	U'_{11}	U_{12}'	U_{13}^{\prime}	U_{22}^{\prime}	U_{23}^{\prime}	U_{33}^{\prime}
0,	34	0	9	7	0	6
0,	22	7	-3	8		6
0,	4	4	5	23		20
O₄	12	1	-2	9	-2	-4
C,	21	3	2	26	3	3
$\overline{C_2}$	32	6	9	42	8	8

For each atom U_a was taken to be U'_{max} , the maximum mean square amplitude of oscillation. The

largest value for U_b was found in one of two ways; if the direction of maximum oscillation was nearly perpendicular to OP, U_b was the mean square amplitude of oscillation in the third orthogonal direction; if, however, the direction of U'_{max} was not perpendicular to OP, then U_b was taken as the value of U' in the direction perpendicular to those of U'_{max} and U'_{min} . Table 7 shows the values of $U'_{\text{max}}(U_a)$, the angles

Table 7. Corrections for rotational oscillation

	$U'_{ m max.} = U_a \ (10^{-3} { m \AA}^2)$	$\mathbf{\not \leqslant U'_{max.}}$ and OP	$U_b~(10^{-3}~{ m \AA^2})$	ε (Å)
0,	37	91.6°	7	0.011
0.	26	133.0	7	0.010
0.	27	85	10	0.011
Õ,	12	74	2	0.008
C,	28	77.6	20	0.013
C_2	45	77	34	0.013

between the direction of $U'_{\text{max.}}$ and OP, U_b , and ε . A new set of atomic co-ordinates was obtained by moving each atom by a distance ε along the line joining it to the mass centre. For the oxygen atoms the values of ε are maximum and may be too large; for the carbon atoms, however, there is the possibility that the centre of rotation is nearer than the mass centre so that the use of OP will give too small a value of ε while the use of U'_{max} tends to give too large a value.

Interatomic distances and bond angles

Bond lengths and their estimated standard deviations, σ , calculated from the uncorrected co-ordinates (Table 3) are shown in Table 8; values corrected for

Table 8.	Bond	lengths	and	angl	les
----------	------	---------	-----	------	-----

Bonds	Uncorr.	σ	Corr.	ψ	Final	
	Å	Å	Å	Å	Å	
S-01	1.461	0.007	1.472	0.002	1.466	
$S - O_2$	1.461	0.007	1.471	0.003	1.466	$1.46 \pm 0.01 \text{ Å}$
$S-O_3$	1.446	0.007	1.456	0.003	1.451	
S-0,	1.597	0.006	1.604	0.004		1.60 ± 0.01
0,-Č,	1.444	0.011	1.455	0.005		$1{\cdot}45{\pm}0{\cdot}02$
$C_{1}^{*} - C_{2}^{*}$	1.512	0.016	1.514	0.005		$1 \cdot 51 \pm 0 \cdot 02$
Angle	s U	ncorr.	Corr.	σ	Fi	nal
0,-8-0	D. 1	13·7°	113·4°	0.4°	11	3·5°)
0,-S-0	ງື້ 1	$15 \cdot 1$	115.0	0.4	11	5.0
0, -8-0	ງ້ 1	01.4	101.7	0.4	10	1.5
0,-S-0	D_{3}^{-} 1	10.7	110.4	0.4	11	0·5 ∫ ±0·4°
0,-S-0	D_{a} 1	08.4	108.8	0.4	10	8.5
$0_{3} - S - 0$	D₄ 1	06.0	106.3	0.4	10	6·0
$\tilde{C_1 - O_4}$	-ŝ 1	15.2	115.4	0.6	11	$5\cdot3\pm0\cdot6^{\circ}$
$C_{2} - C_{1}$	-O ₄ 1	.06.6	106.4	0.9	10	6.5 ± 0.9

rotational oscillation appear in the fourth column followed by ψ , the uncertainty in the bond lengths arising from calculable uncertainties in the rotational corrections, i.e. ψ is obtained from $\sigma(\varepsilon)$ which is derived by assuming that the values of U_a and U_b are correct and each has the standard deviation $\sigma(U)$. The uncorrected and corrected bond angles and their estimated standard deviations also appear in Table 8. To obtain final values a mean of the minimum (uncorrected) and maximum (corrected) bond lengths was taken. The limits of error quoted allow for the estimated standard deviations in the co-ordinates and the uncertainties in the corrections for rotational vibrations.

Discussion

The independent values for the lengths of the three chemically equivalent sulphur-oxygen bonds are identical, 1.46 ± 0.01 Å. In a similar anion, aminedisulphonate $(NH(SO_3)_2)^2$, Jeffrey & Jones (1956) obtained a mean S-O bond length of 1.447 Å, which, being derived from three-dimensional isotropic refinement, is comparable with the mean uncorrected value, 1.456 Å in the ethyl sulphate anion. This very good agreement indicates that for an anion of the type $R-SO_3^-$ the minimum sulphur-oxygen bond length is 1.45 Å. There is a significant difference $(\Delta/\sigma = 12)$ between the $S-O_4$ bond length and the mean of the other three sulphur-oxygen bond lengths. For the carbon-carbon and carbon-oxygen bonds the lengths do not differ significantly from the accepted single bond lengths. However, there appears to be a significant difference between the measured $S-O_4$ length of 1.60 Å and the single bond length calculated by the Schomaker-Stevenson (1941) rule, 1.69 Å. Pauling (1952) pointed out that for elements like sulphur, which can form π -bonds using 3d orbitals, the Schomaker-Stevenson rule might not allow for the doublebond character in a formally single bond between elements of different electronegativities. Pauling (1952) gave an empirical relation connecting the bond number with interatomic distance in oxides and oxy-anions. Approximate application of his method to the $S-O_4$ bond gives a predicted distance 1.61 Å, the reduction by 0.08 Å from the ideal single bond length arising from π -bonding the extent of which depends solely upon the electronegativity difference between sulphur and oxygen. For the other three sulphur-oxygen bonds the π -bonding depends not only upon the electronegativity difference but also on the average bond order i.e. 1.66 of the bonds in the three equivalent forms

From Pauling's empirical relation the expected bond length is 1.48 Å in satisfactory agreement with the observed value, 1.46 Å.

The S–O bonds are not arranged in a regular tetrahedron; the angles including O_4 are all less than the tetrahedral, and the other angles (between the charged atoms) are all greater. This divergence is reasonable

and is similar to that found in the aminedisulphonate, but the highly significant variation in the angles between equivalent S-O bonds requires explanation. The identity of the equivalent S-O bond lengths suggests that the explanation of the angular distortion does not lie in the type of bond orbitals but in the environment of the oxygen atoms in the solid. Atom O_1 is included in both the largest and the smallest angles; apart from atoms in the same anion, this oxygen atom has as nearest neighbours two potassium ions, at 2.97 Å and at 3.01 Å, and three oxygen atoms, O_1 at 3.27 Å, O_2 at 3.14 Å and O_3 at 3.36 Å. The coordinates of a position O'_1 were found to satisfy the conditions that $S-O'_1 = S-O_1$ and $O'_1-S-O_4 = 107^\circ$ (i.e. equal to the mean value for O_2 -S- O_4 and O_3 -S- O_4 , and incidentally satisfying the condition that the angles $O'_1 - \hat{S} - O_2$, $O'_1 - \hat{S} - \hat{O}_3$ and $O_2 - \hat{S} - O_3$ do not differ significantly); in this new position the oxygen would be further from one of the potassium ions, the $K-O'_1$ distances being 3.04 Å and 3.01 Å, and nearer to another oxygen identically charged, O'_1 at 2.88 Å, the other distances are $O'_1 - O_2 = 3.17$ Å and $O'_1 - O_3 =$ 3.20 Å. Hence, there is a strong probability that the variations in the bond angles arise from electrostatic interactions in the solid.

It is a pleasure to thank Dr J. A. J. Jarvis for allowing his data to be used for this refinement, Prof. E. G. Cox, F. R. S. for valuable advice, Dr D. W. J. Cruickshank and Miss D. E. Pilling for carrying out the calculations on the Manchester University electronic computer, the use of which has been made possible by a grant from the Department of Scientific and Industrial Research.

References

- ABRAHAMS, S. C. (1956). Quart. Reviews, 10, 407.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Cryst. 8, 478.
- Cox, E. G., CRUICKSHANK, D. W. J. & SMITH, J. A. S. (1955). Nature, Lond. 175, 766.
- CRUICKSHANK, D. W. J. (1956a). Acta Cryst. 9, 747.
- CRUICKSHANK, D. W. J. (1956b). Acta Cryst. 9, 752.
- CRUICKSHANK, D. W. J. (1956c). Acta Cryst. 9, 757.
- CRUICKSHANK, D. W. J. & ROBERTSON, A. P. (1953). Acta Cryst. 6, 698.
- Internationale Tabellen zur Bestimmung von Kristallstrukturen (1935). Berlin: Borntraeger.
- JARVIS, J. A. J. (1953). Acta Cryst. 6, 327.
- JEFFREY, G. A. & JONES, D. W. (1956). Acta Cryst. 9, 283.

LYNTON, H. (1955). PhD. Thesis, University of Leeds.

- McWEENY, R. (1951). Acta Cryst. 4, 513.
- PAULING, L. (1952). J. Phys. Chem. 56, 361.
- SCHOMAKER, V. & STEVENSON, D. P. (1941). J. Amer. Chem. Soc. 63, 37.
- STEEMAN, J. W. M. & MACGILLAVRY, C. H. (1954). Acta Cryst. 7, 402.